【学术团队】先进储能材料及器件学术团队
2024年05月04日13时15分    阅读:7085
供稿单位 / 科技产业处

团队简介:主要从事锂/钠离子电池电极材料、新型电化学储能电池、先进插层型层状氧化物纳米材料和电化学储能机制及安全等相关研究。近年来,承担国家自然科学基金面上(青年)7项、江苏省自然科学基金面上(青年)9项、企业委托研发项目15项,已培养研究生50余名。在 Nat. Commun.、J. Am. Chem. Soc.、Adv. Mater.、Angew. Chem. Int. Ed.、Adv. Funct. Mater.、Nano Energy、Energy Storage Mater.、Chem. Eng. J.、J. Power Sources等期刊发表SCI学术论文200余篇,授权发明专利26件,专利转让5件。

团队骨干:

202405041714799794991213_副本.png

研究内容:

1.P2/O3双相高熵层状氧化物正极材料结构调控及储钠性能:探索P2/O3双相高熵材料合成及其在新型钠离子电池体系中的应用。通过原位同步XRD等研究其材料结构、形貌与电化学性能之间的“构-效”关系,为高稳定性、高性能的钠离子电池正极材料开发提供理论依据。

202405041714799819113096_副本.png

2.高能量密度金属电池微纳结构设计: 基于表界面原位重构策略实现具有高稳定性金属基电极材料微纳结构的设计和调控,结合原位、非原位物相表征、第一性理论计算以及多物理场有限元分析,探究高能量密度金属电池电极反应动力学过程,阐明反应中间相演变规律及“构效”关系,为金属基电池体系的开发提供了思路借鉴和理论依据。

202405041714799831646597_副本.png

3.淀粉基硬碳材料的钠离子存储:淀粉中的直链结构可以分解成生长的类石墨层,而支链结构则倾向于形成高度无序的活性位点,可以成为阻止淀粉衍生碳石墨化趋势的屏障,在钠离子电池硬碳材料前驱体制备中具有一定优势。系统研究淀粉基硬碳微观结构演变机制及其对钠储存的影响,是合理设计淀粉衍生高性能硬碳阳极的关键。

202405041714799840151245_副本.png

4.过渡金属硫族化合物储能电池关键电极材料:研究新结构过渡金属硫族化合物纳米材料合成,揭示其储能反应机理和材料优化改性策略。

202405041714799852410355_副本.png

5.高电压尖晶石锰酸锂核壳复合材料:在高电压正极材料镍锰酸锂表面构建了磷酸钴锂纳米复合层,既保证了界面层的Mn3+,又阻碍了Mn2+的溶出,研究复合材料对电池倍率性能和循环性能的影响。

202405041714799859302449_副本.png

6.富锂锰基锂离子电池正极材料表面异质层的构建及其储锂特性:构建富锂锰基材料表面异质层,避免传统异相晶体结构包覆过程中晶格失配问题及包覆层在反复充放电过程中瓦解脱落的问题。研究表面异质层掺杂重构、空位形成、晶向异构对材料表面电子传导、锂离子扩散、首次活化过程及表面层相变抑制的作用机理,解决富锂锰基材料循环过程中表面结构退化,输出电压和容量衰退的问题,为高性能锂离子电池正极材料开发提供理论依据。

202405041714799867827785_副本.png

7.高性能可充镁电池正极材料:制备层状多元过渡金属氧化物并应用于可充镁电池。研究材料微观结构调控对镁离子扩散性、导电性和结构稳定性的作用机制,明确其储镁机制,为可充镁电池正极材料开发提供新思路。

202405041714799877970911_副本.png

8.高比能储能系统(锂硫电池)的设计与优化:从功能正极宿主材料设计、高容量正极设计、商用隔膜改性以及电化学反应历程追踪等方面,开展锂硫电池系统研究。重点解决锂硫电池中多硫化锂的“穿梭效应”、硫利用率低、反应过程不易追踪等关键问题,推动锂硫电池实用化进程。

202405041714799884112105_副本.png

9.3D-鸟巢结构VO2/MXene复合材料构筑及其储锌性能:研究VO2/MXene异质结构构筑,并应用于水系锌离子电池体系正极材料。提升其比表面积、活性位点,改善电池的倍率和循环性能,系统研究其对基质材料充放电过程中的体积膨胀效应的作用机制。

202405041714799894512769_副本.png

10.导电高分子聚苯胺/层状过渡金属氧化物复合:建立导电高分子聚苯胺/层状过渡金属氧化物复合材料结构模型,采用第一原理计算复合材料电子结构、层间Li+离子迁移机制、无机主体层板与高分子链间的相互作用模式,为二次锂电池正极材料开发提供有益参考。

202405041714799902308791_副本.png

代表性论文:

[1]L Cao, J Guo, F Yong, Y Li, Y Qiu, W Zhu, Y Tan, C Sun, X Rui, H Geng, A rooted multifunctional heterogeneous interphase layer enabled by surface-reconstruction for highly durable sodium metal anodes, Adv. Funct. Mater. 2024, 2313962.

[2]C Hu, H Dong, Y Li, S Sinha, C Wang, W Xu, L Song, K Suenaga, H Geng, J Wang, Q Huang, Y Tian, X Huang, Self‐reconstruction of single‐atom‐thick a layers in nanolaminated MAX phases for enhanced oxygen evolution, Adv. Funct. Mater.,2023, 33, 2211530.

[3]B Zhang, B Xu, Z Xiao, L Cao, H Geng, X Ou, Inner-stress-dissipative, rapid self-healing core-shell sulfide quantum dots for remarkable potassium-ion storage, Energy Storage Mater., 2023, 56, 96-107.

[4]C Zhan, L Bu, H Sun, X Huang, Z Zhu, T Yang, H Ma, L Li, Y Wang, H Geng, W Wang, H Zhu, C Pao, Q Shao, Z Yang, W Liu, Z Xie, X Huang, Medium/high-entropy amalgamated core/shell nanoplate achieves efficient formic acid catalysis for direct formic acid fuel cell, Angew. Chem. Int. Ed., 2023, 62, 2213783.

[5]C Liu, S Zhang, Y.Y Feng, X.W Miao, G Yang, J Li, Preparation and characterization of the Li1.12K0.05Mn0.57Ni0.24Nb0.02O2 cathode material with highly improved rate cycling performance for lithium ion batteries, Nanoscale, 2022, 14, 65.

[6]B.T Song, Y.H Li, X.P Wu, F Wang, Y.H Sun, A.P Jia, X. N, Li Jin, X.K Ke, Z.W Yu, G Yang, W.H Hou, W.P Ding, X.Q Gong, L.M Peng, Unveiling the surface structure of ZnO nanorods and H2 activation mechanisms with 17O NMR spectroscopy, J. Am. Chem. Soc. 2022, 144, 23340-23351.

[7]W.Z Kou, L. Yu, Q. Wang, Y.J Yang, T.H Yang , H.B Geng, X.W Miao, B Gao, G Yang, Enhanced Zn2+ transfer dynamics via a 3D bird nest-like VO2/MXene heterojunction for ultrahigh-rate aqueous Zinc-ion batteries. J. Power Sources 2022, 520, 230872.

[8]J.S Cai, Z.T Sun, W.L Cai, N Wei, Y.X Fan, Z.F Liu, Q Zhang, J.Y Sun. A robust ternary heterostructured electrocatalyst with conformal graphene chainmail for expediting Bi-directional sulfur redox in Li–S batteries. Adv. Funct. Mater. 2021, 31, 2100586.

[9]J.S Cai, J. Jin, Z.D. Fan, C. Li, Z.X. Shi, J.Y. Sun, Z.F. Liu, 3D Printing of V8C7 -VO2 bifunctional scaffold as effective polysulfide immobilizer and lithium stabilizer for Li-S batteries. Adv. Mater. 2020, 32, 2005967.

[10]J.S Cai, Z.D Fan, J Jin, Z.X Shi, S.X Dou, J.Y Sun, Z.F Liu, Expediting the electrochemical kinetics in 3D-printed sulfur cathodes for Li-S batteries with high rate capability and areal capacity. Nano Energy 2020, 75, 104970.

[11]J.F Zhao, Y.C Weng, S.L Xu, A. Shebl, X.M Wen, G Yang, Proteinmediated synthesis of Fe3N nanoparticles embedded in hierarchical porous carbon for enhanced reversible lithium storage, J. Power Sources, 2020, 464, 228246

[12]J.S Cai, J.Y Huang, S.C Wang, J. Iocozzia, Z.T Sun, J.Y Sun, Y.K Yang, Y.K Lai, Z.Q Lin, Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degardation of chemical pollutants and production of chemical resources. Adv. Mater. 2019, 31, 1806314.

[13]Y.H Li, X.P Wu, N.X Jiang, M Lin, L Shen, H.C Sun, Y.Z Wang, M Wang, X.K Ke, Z.W Yu, F Gao, L Dong, X.F Guo, W.H Hou, W.P Ding, X.Q Gong, Clare P. Grey, L.P Peng, Distinguishing faceted oxide nanocrystals with O-17 solid-state NMR spectroscopy, Nat. Commun. 2017, 8, 581.

[14]X.W Miao, Z.Y Chen, N Wang, Y.N Nuli, J.L Wang, J Yang, Shin-ichi. Hirano, Electrospun V2MoO8 as a cathode material for rechargeable batteries with Mg metal anode, Nano Energy, 34 (2017) 26-35.

[15]Y Liu, Z.P Lu, C.F Deng, J.J Ding, Y Xu, X.J Lu, G Yang. A novel LiCoPO4-coated core-shell structure for spinel LiNi0.5Mn1.5O4 as a high-performance cathode material for Lithium-ion batteries. J. Mater. Chem. A 2017, 5, 996-1004.

[16]N.N Feng, P He, H.S Zhou. Critical challenges in rechargeable aprotic Li-O2 batteries, Adv. Energy Mater., 2016, 6, 1502303.

[17]H.M Ji, C Liu, T Wang, J Chen, Z.N Mao, J Zhao, W.H Hou, G Yang, Porous hybrid composites of few-layer MoS2 nanosheets embeded in carbon matrix with an excellent supercapacitor electrode performance, Small, 2015, 11, 6480–6490.

[18]H.M Ji, X.L Liu, Z.J Liu, B Yan, L Chen, Y.F Xie, C Liu, W.H Hou, G Yang, In situ preparation of sandwich MoO3/C hybrid nanostructures for high-rate and ultralong-life supercapacitors, Adv. Funct. Mater., 2015, 25, 1886–1894.

[19]L Wang, L Chen, B Yan, C.G Wang, F. Zhu, X.F Jiang, Y.M Chao, G Yang, In-situ preparation of SnO2@polyaniline nanocomposite and the synergetic structure for high-performance supercapacitors, J. Mater. Chem. A, 2014, 2, 8334-8341.

[20]X.W Miao, H Ni, H Zhang, C.G Wang, J.H Fang, G Yang, Li2ZrO3 coated 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery, J. Power Sources 2014, 264, 147-154.


(材料工程学院/供稿 洪学鹍/审核 知晓/编辑)