【学术团队】功能多孔框架材料开发关键技术学术团队
2024年05月08日08时23分    阅读:4710
供稿单位 / 本站

团队简介:主要从事多孔框架材料MOFs的功能调控、光氧化还原方法学用于生物功能分子库的开发、纳米多孔材料与疾病诊疗等方面的研究。近年来,承担国家自然科学基金、江苏省自然科学基金、江苏省高等学校自然科学研究、企业委托攻关等各类项目20余项,多人获评江苏省科技副总,在J. Am. Chem. Soc.、Nat. Commun.、Angew. Chem. Int. Ed.、Chem. Commun.等期刊发表高水平论文30余篇。

团队骨干:

202405081715128727848552_副本.png

研究内容:

1.光刺激响应型MOFs材料的开发:三重态卡宾(TCs)是不满足八隅律的开壳层化学物质,具有很高的反应活性,通常在化学反应中充当重要的中间体,用于开发有机磁体和磁开关器件。制备既稳定又具有高反应活性的TCs具有挑战性。研究团队以MOF的纳米空间作TCs平台,开发了一种新的MOF,命名为MaNa-1。配体FDP-N2包含一个重氮基团,在紫外光照射下会产生TCs。TC@MaNa-1与配体FDP-N2产生的TC相比,稳定温度提高了80 K。由于TC@MaNa-1的多孔结构,O2分子与TC@MaNa-1的反应性远大于配体FDP-N2。

202405081715128741546596_副本.png

2. 柔性多孔MOFs材料研制:柔性多孔框架材料具有优异的气体吸附与分离性能。开发了一种原子互换法,调控骨架柔性的方法。使用含吡嗪和吡啶基团的三氮唑配体,在溶剂热条件下构筑了同构的PCP-N(含吡嗪)和PCP-C(含吡啶)。PCP-N的孔道结构在吸附CO2和C2H2气体前后发生一维到三维的转变,表明气体与框架间发生协同作用。

202405081715128757128732_副本.png

3. 主客体协同的MOFs自旋转换体系:利用气体分子与柔性MOFs骨架协同作用,探索气体分子调控MOFs自旋转换的机理。为调控滞回线出现的温度和宽度带来变革性突破,开创双稳态研究的新体系。

202405081715129197359103_副本.png

4. 光催化偶联反应:在光氧化还原条件下,实现自由基的可控生成和高化学选择性反应。开发了使用脂肪胺为新型来源广泛的绿色烷基自由基前体,绿色廉价的三乙胺作为还原剂,镍/光共催化的还原芳基化反应;开发了多组分光催化反应用于快速组装在药物和农业化学中重要的复杂分子库,这类反应条件温和,官能团兼容性优异。通过连续流动光催化反应器的设计和开发,用于药物中间体在工业生产中的本征安全放大和生产。

202405081715129209448251_副本.png

202405081715129214405779_副本.png

5. 导电高分子材料研制:设计嫁接18-冠-6的含K+离子的聚芴材料作为电子注入层,以铝为阴极,当以发深蓝光的聚合物为发光层材料,并在发光层中掺入聚(环氧乙烷)阻挡空穴,PLED器件的最大亮度达到54800 cd/m2,外部量子效率为5.42%。这一研究工作为设计并开发高性能PLED具有重要的借鉴意义。

202405081715129220426011_副本.png

代表性论文:

1.Y. Tang, Y. Cai, Z. Xie, Z. Gao, X. Chen, J. Yi, Multicomponent reactions to access S-aryl dithiocarbamates via an electron donor–acceptor complex under open-to-air conditions,Org. Biomol. Chem.,2024, 22, 1378–1385.

2.Y. Wu, S. Zhao, Y. Xu, C. Tang, Y. Feng, M. Zhang, H. Yang, Y. Ma, Y. Li, W. Wang, A hexanuclear gadolinium(III)-based nanoprobe for magnetic resonance imaging of tumor apoptosis, ACS Appl. Nano Mater., 2024, 7, 9020-9030.

3.W. Zhou, Z. Luo, H. Xiao, J. Yi, J. Dai, Photo-triggered, copper(II) chloride-catalyzed radical hydroalkylation and hydrosilylation of vinylboronic esters to access alkylboronic esters, J. Org. Chem.,2023, 88, 14708−14718.

4.N. Huang, X. Tang, W. Meng, Y. Lai, X. Zhou, X. Yu, W. Zhang, J. Chen, Immunogenic radiation therapy for enhanced antitumor immunity via a core-shell nanosensitizer-mediated immunosuppressive tumor microenvironment modulation, ACS Nano, 2023, 17, 19853-19864.

5.Y. Xu, C. Li, X. Wu, M. Li, Y. Ma, H. Yang, Q. Zeng, J. L. Sessler, Z. Wang, Sheet-like 2D manganese(IV) complex with high photothermal conversion efficiency, J. Am. Chem. Soc., 2022, 144, 18834-18843.

6.Y. Ma, X. Tang, M. Chen, A. Mishima, L. Li, A. Hori, X. Wu, L. Ding, S. Kusaka. R. Matsuda, Design of a MOF based on octa-nuclear zinc clusters realizing both thermal stability and structural flexibility, Chem. Commun., 2022, 58, 1139-1142.

7.B. Yuan, G. Gou, T. Fan, M. Liu, Y. Ma, R. Matsuda, L. Li, Delicate and fast photochemical surface modification of 2D photoresponsive organosilicon metal–organic frameworks, Angew. Chem. Int. Ed., 2022, 61, e202204568.

8.J. Shen, L. Pan, X. Zhang, Z. Zou, B. Wei, Y. Chen, X. Tang, D. Zou, Delivering singlet oxygen in dark condition with an anthracene-functionalized semiconducting compound for enhanced phototheranostics, Front. Bioengin. Biotech., 2022,10, 781766.

9.T. Nakajo, J. Kumagai, S. Kusaka, A. Hori, Y. Hijikata, J. Pirillo, Y. Ma, R. Matsuda, Triplet carbene with highly enhanced thermal stability in the nanospace of a metal−organic framework, J. Am. Chem. Soc.,2021, 143, 8129-8136.

10.S. Kusaka, Y. Nakajima, A. Hori, A. Yonezu, K. Kikushima, W. Kosaka, Y. Ma, R. Matsuda, Molecular motion in the nanospace of MOFs upon gas adsorption investigated by in situ Raman spectroscopy, Faraday Discuss., 2021, 225, 70-83.

11.Y. Harada, S. Kusaka, T. Nakajo, J. Kumagai, C. Kim, J. Shim, A. Hori, Y. Ma, R. Matsuda, Stabilization of radical active species in a MOF nanospace to exploit unique reaction pathways, Chem. Commun., 2021, 57, 12115–12118.

12.Q. Hu, X. Tian, P. Wang, X. Tang, W. Zhang, D. Young, Connectivity replication of neutral Eu3+- and Tb3+-based metal−organic frameworks (MOFs) from anionic Cd2+-based MOF crystallites, Inorg. Chem., 2021, 60, 18614-18619.

13.D. Zou, A. Zhang, J. Chen, Z. Chen, J. Deng, J. Yang, Designing a lysosome targeting nanomedicine for pH-triggered enhanced phototheranostics, Mater. Chem. Front., 2021, 5, 2694-2701.

14.J. Yang, S. Zhang, Z. Feng, Y. Cao, D. Zhu, Ba-MOFs with tetrazole-based acetic acids: unusual configuration, novel topology and high proton conductivity, Dalton Trans., 2021, 50, 11975-11985.

15.S. Kusaka, A. Kiyose, H. Sato, Y. Hijikata, A. Hori, Y. Ma, R. Matsuda, Dynamic topochemical reaction tuned by guest molecules in the nanospace of a metal−organic framework, J. Am. Chem. Soc., 2019, 141, 15742−15746.

16.J. Yi, S. O. Badir, R. Alam, G. A. Molander,Photoredox-catalyzed multicomponent petasis reaction with alkyltrifluoroborates, Org. Lett., 2019, 21, 4853−4858.

17.J. Yi, S. O. Badir, L. M. Kammer, M. Ribagorda, G. A. Molander, Deaminative reductive arylation enabled by nickel/photoredox dual catalysis, Org. Lett., 2019, 21, 3346−3351.

18.X. Lu, B. Xiao, Z. Zhang, T. Gong, W. Su, J. Yi, Y. Fu, L. Liu,Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation, Nat. Commun.,2016, 7, 11129.

19.Y. Ma, R. Matsuda, H. Sato, Y. Hijikata, L. Li, S. Kusaka, M. Foo, F. Xue, G. Akiyama, R. Yuan, S. Kitagawa, A convenient strategy for designing a soft nanospace: an atomic exchange in a ligand with isostructural frameworks, J. Am. Chem. Soc., 2015, 137, 15825-15832.

20.J.Yi, X.Lu, Y.Sun, B.Xiao, L.Liu,Nickel-catalyzed sonogashira reactions of non-activated secondary alkyl bromides and iodides,Angew. Chem. Int. Ed.,2013, 52, 12409 –12413.


(马运声/供稿 洪学鹍/审核 知晓/编辑)